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Abstract:  

The efficiency and resilience of communication networks is critical in recovery efforts in the wake of large-scale 

natural disasters as they represent key communication spaces to coordinate rescue and support social functionality 

restoration. Standard routing protocols are prone to collapse during dynamic and unpredictable post-disaster 

conditions causing severe communication latencies, and energy wastage. In this paper, we propose topology-

sensitivity reinforcement learning to learn energy efficient routing in the post disaster communication networks. 

The suggested framework will combine deep reinforcement learning and real-time topological information to 

perform dynamic adaptation of the routing decision on node availability and connectivity patterns and remaining 

levels of energy. Through continuous educational exposure as the network environment changes, the framework 

can proactively respond to optimal energy-efficient routing paths optimized to ensure greatest network 

connectivity. As the simulation experiments indicate, topology-aware reinforcement learning strategy greatly 

enhances packet delivery ratio, network lifetime, and robust communication as against conventional routing 
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protocols. The results emphasize the need of merging learning based adaptation with topology awareness when 

designing emergence and energy conscious routing protocols in emergency communication. 

Keywords: Post-Disaster Communication Networks, Reinforcement Learning, Topology Awareness, Energy-

Efficient Routing, Network Resilience 

I . INTRODUCTION 

Over the last few years, the severity and the regularities of many natural calamities like earthquakes, floods, 

hurricanes, and wild fires, have spanned with a full swing owing to the direct man-made, and the environmental 

causes. After such disastrous events, the presence of an effective and stable communication system becomes an 

essential need in the coordination of a disaster response team, government, and to required populations. 

Nevertheless, classical fixed communication systems tend to fail when subject to severe physical destructive 

events, yielding a wide gap in data sharing functions, decision-making lags and lack of centralization of rescue 

services. Upon failure of terrestrial communication infrastructure (or when the infrastructure entirely does not 

exist) the homogeneous wireless devices and mobile ad hoc nodes may be deployed to constitute the post-disaster 

communication networks through its collaborative network framework in providing the emergency 

communication backbone. Regrettably, such transient and on-demand networks are characterised by high 

topological dynamics, varying link qualities, inadequate bandwidth, energy constraints and characterised by 

unstable node behaviour which hampers the performance of the conventional deterministic routing algorithms 

quite substantially. Specifically, the energy use is a primary limitation during postdisaster situations, because a 

majority of the nodes are battery operated and they could not be easily charged and refreshed within a limited 

duration of time. Thus, routing decision which do not take into account the residual energy Levels of the nodes 

and changing topology situations can easily lead to exhaustion of network resources, partial network isolation and 

failure of communication in general. Due to that, more of the research community has been looking into intelligent 

and adaptive routing mechanisms to improve the resiliency and energy requirements of the post disaster 

communication networks. In spite of the diversity of approaches to heuristic and reactive routing protocols in ad 

hoc networks scenario, the majority of them operate based on some pre-defined rules, already chosen routing 

strategies and/or on a limited view of the network dynamics and do not have the capability of continuous learning 

under a dynamic environment. The more recent addition in this context is the reinforcement learning (RL) methods 

that proved to be an efficient algorithm when handling uncertain and extremely dynamic network environments. 

At a given network node (or agent) in RL, the agent can interact with its environment at that point autonomously 

and it receives feedback in the form of rewards or penalties, and would then adjust its decision-making policy to 

optimize some particular long -term goal. Reinforcement learning allows its performance to be iteratively refined 

on the basis of the past interactions and is in that way superior to rule-based routing protocols. Nevertheless, recent 

RL-based routing algorithms tend to overlook the topology of the underlying network and hence the overall 

comprehension of the evolution of the connectivity patterns in multi-period network dynamics. This constraint 

causes inefficient or even detrimental routing decision in the event the network topology shifts in a dramatic way 

because of nodes dying, physical obstruction etc. Additionally, most current methods fail to explicitly build energy 

awareness into the reward function applied on the RL agent and this lowers their applicability to the post damage 

world where energy storage has become a mandatory requirement. This paper suggests a topology-aware 

reinforcement learning mechanism to design energy-efficient routing in post -disaster routed networks. The main 

idea about the proposed approach is to incorporate the topological data into the learning of the RL agent so that it 

could learn about the structure properties of the network and start to actively choose paths through the network to 

both preserve connectivity as well as to equalise the energy distribution between the different nodes. The 

framework also dynamically acquires the topological characteristics of the network (node degree, clustering 

coefficient, betweenness centrality and neighbour density) at each time step and integrates them with other 

traditional node attributes (residual battery level and link quality) to form a complex state space representation of 

the RL agent. Consequently, the agent may gain a profound insight on the effect of topological features in routing 

performance, and tune its routing behavior with regard to a dynamically changing network or the unexpected 

breakdown of key nodes. By adopting energy metrics into the reward function, the RL agent is incentivised to 

consume least energy possible and not overuse the nodes with high centrality that may act as bottlenecks or single 
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points of failure. The efficiency of the proposed framework is validated in the form of extensive simulation studies 

carried out to handle a large number of differing postdisaster scenarios at random node failure patterns, irregular 

obstacle layouts, and highly dynamic changes in the topology. The experiments demonstrate that topology-aware 

reinforcement learning solution outperforms a set of benchmarked protocols (both legacy ad hoc routing schemes 

and standard RL-based protocols) regarding the packet delivery ratio, average end-to-end delay, network lifetime, 

as well as energy consumption distribution. Moreover, the framework demonstrates a high level of flexibility and 

scalability being able to sustain powerful communication performance with low concentration of a network or a 

considerable number of mobile nodes. These preliminary results demonstrate that the topology-aware 

reinforcement learning can be used as a powerful basis to construct robust, self-sustaining, and automatic routing 

protocols of emergency communication systems. It ultimately leads to more dependable and stable 

communications infrastructures after the occurrence of disasters and makes the emergency response teams able to 

execute their life savings operations efficiently and in time 

II. RELEATED WORKS 

The recent advancements on the field of post-disaster communication networks have concentrated on maximizing 

the efficiency of routing, improving network resiliency, and saving energy potentials within a strongly volatile 

and resource-limited conditions. Conventional routing protocols (e.g., AODV and DSR) that are commonly used 

in mobile ad hoc networks could not update themselves well in the context of disasters, because of fixed route 

repair procedures and little topology awareness of the rapidly changing topology [1]. As reported in [2] and [3], 

reactive routing methods introduce too many control overheads when quick links breaks occur, eventually 

resulting to higher energy wastage and low packet delivery. A number of topology-based routing protocols are 

suggested to tackle this issue, in which forwarding decisions can be taken by nodes, depending on local 

connectivity patterns. To illustrate one scenario, the topology-control scheme proposed in [4] determines a set of 

critical nodes in the sense of graph-theoretic centrality measures of the nodes, and does not overuse them so as to 

minimize the likelihood of collapse in connectivity. The regroup procedure of [5] similarly builds the lightweight 

clusters dynamically and exploits the intra- and inter-cluster communication to enhance scalability and minimize 

overlapping messages. However, topology-aware heuristics assume pre-defined rules which do not adapt 

themselves to unforeseen topology or node behaviour. Machine learning methods, and reinforcement learning 

(RL) in particular, have gained much attention in the field over the past few years due to their capacity to learn 

optimal routing policies by trial- and error using dynamic feedback on the network. Along this same vein, the 

routing protocol proposed in [6] run on Q-learning will support delivery ratios and eliminate delays by 

strengthening route choices whose outcomes are the outcome of successful packet transmission. Similarly, the 

deep reinforcement learning method in [7], develops an elaborate routing policy based on a neural network that 

can learn complex stateaction pairs on demand. Nonetheless these approaches do not much recognize the 

topological features of the underlying network and look at each routing decision in a vacuum that is independent 

of topology. In [8], it has been shown that including topological features into the state representation of RL agents 

brings a substantial performance gain when applied to wireless sensor networks, yet it is not clear whether it would 

also be the case in post-disaster scenarios. In [9], scholars note that energy awareness is central to RL-based 

schemes and reward functions need to be implemented to consider the remaining energy levels to avoid 

overloading the nodes. There is a way of introducing a simple energy-aware reward scheme in the scheme of [10], 

though it lacks the topological roles of the nodes, and thus this might cause network partition even though, on the 

individual nodes, their energy levels remain reasonable. In [11, 12], other approaches also suggest hybrid protocols 

using a topology-control and reinforcement learning combination. Such combination strategies usually consider 

topological parameters with fixed weights, e.g., the degree of a node or its betweenness centrality, and use them 

as inputs into an RL algorithm. Although this enhances routing performance when the network operates within 

stable conditions, there is still no dynamic adaptation to extreme changes of topology in cases of a post-disaster 

scenario. Recent innovations in the learning of graph representations, e.g. graph neural networks (GNNs), that are 

able to capture global topological properties of graph representation, have shown good decision outcomes in 

communication networks [13]. They are however computationally very expensive and training may be unsuitable 

to lightweight post-disaster equipment where processing and energy resources are extremely scarce. Also, the 
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majority of GNN-based routing algorithms continue to not explicitly model the energy constraints as part of their 

optimization decision sets. A further current of study has examined bio-inspired approaches, including particle 

swarm optimisation and ant colony optimisation, as methods of routing in disaster networks [14]. These methods 

have to some extent attained adaptability but are weak due to not adapting well to a highly dynamic environment 

and that they depend on global convergence. Recent work in [15] has clearly indicated that the future leading post-

disaster routing technologies must incorporate topology-awareness, energy-efficiency and adaptive learning into 

a multi-purposed model. This leads to the work proposed in this paper that aims to create a topology-sensitive 

reinforcement learning framework incorporating the usage of real-time topology details and energy values to 

create robust and energy efficient routing in post-disaster communication networks. In spite of the advances done 

in the process of integrating learning-based mechanisms and topology awareness, there still exist some unsolved 

issues that may have motivated further research. Among the main weaknesses of the current research is the 

inability to identify the trade-off between the aspects of adaptability and energy efficiency altogether. Although a 

substantial level of a change in the environment can often be successfully adapted to through many reinforcement 

learning methods, this model often culminates in high energy expenditure which is caused by the frequent 

exploration and evolution of the policy. In contrast, approaches that purely optimize on energy preservation have 

the tendency to trade off on route adaptability, resulting to inefficient routing through disaster prone changing 

environments. Scalability of methods proposed is another problem. Solutions that have been successful in small-

scale networks and with few nodes do not necessarily scale to large-scale deployment where, with the exponential 

combination of routes, and where the overheads of learning become an issue. Moreover the fairness tree in energy 

usage in the network has also been lost in most frameworks. The absence of mechanisms adequate to balance the 

traffic throughout the network can result in an excessive reliance on high-degree or centrally placed nodes to 

execute traffic forwarding, which results in the premature exhaustion of the energy store of these nodes and 

subsequent network partition. Another research insight highlighted by analysts is that the protocols in place are 

not thoroughly in the face of highly simulated environments of disaster where even the presence of fallen 

structures, disruption of power lines, disabling communication lines, etc., play a key role in altering the norms of 

communication. Such settings might encounter the failure of simulation-based assessments to capture the 

unpredictability of the real situation. It is also becoming clear that security need to be viewed with routing 

efficiency and energy management. In reinforcement learning designs, routing regulations might be on the 

consequences of malicious nodes, purposeful jamming, or hacked agents unless strong safety precaution 

mechanisms are incorporated. In combination, these issues represent an ever-present need to develop a unified 

strategy that is lightweight, scalable, energy-conscious, topology-aware, and safe the proposed framework in this 

paper will help to provide. 

III. METHODOLOGY 

3.1 Research Design 

The research adopts a simulation-driven experimental design to evaluate the effectiveness of topology-aware 

reinforcement learning for energy-efficient routing in post-disaster communication networks. The design 

incorporates disaster-inspired scenarios, network topologies of varying densities, and heterogeneous device 

constraints. The key focus is to integrate topology-aware metrics into reinforcement learning algorithms and to 

compare their performance against conventional routing protocols and baseline RL methods [16]. By combining 

agent-based modeling with topology-driven inputs, the framework ensures robust adaptability to rapidly changing 

communication environments. 

3.2 Simulation Environment 

The study uses the NS-3 simulation platform, enhanced with Python-based reinforcement learning libraries, to 

model post-disaster communication networks. The environment consists of mobile ad hoc nodes deployed over 

irregular terrain with random node failures to emulate disaster conditions. Each node is equipped with limited 

battery reserves, mobility functions, and communication capabilities. To evaluate scalability, simulations were 

conducted with 50, 100, and 150 nodes over an area of 1000 × 1000 m². Mobility models such as Random 
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Waypoint and Gauss-Markov were employed to replicate the unpredictable movement of rescue personnel and 

devices [17]. 

Table 1. Simulation Parameters 

Parameter Value Range/Description 

Simulation Tool NS-3 with Python RL Integration 

Area of Deployment 1000 × 1000 m² 

Node Count 50, 100, 150 

Mobility Models Random Waypoint, Gauss-Markov 

Energy Model Initial 1000 Joules/node 

Communication Range 150 m 

MAC Protocol IEEE 802.11b 

Simulation Time 1000 seconds 

 

3.3 State Space and Actions 

The RL agent defines its state space using both node-centric and topology-centric parameters. Node-centric 

features include residual energy, link quality, and buffer occupancy, while topology-centric features consist of 

node degree, clustering coefficient, and local betweenness centrality. Actions correspond to selecting the next-hop 

node for data forwarding. By combining topology-awareness with local energy metrics, the agent can balance 

between efficient routing and fair energy distribution [18]. 

3.4 Reward Function Design 

The reward function is formulated to encourage successful data delivery while penalizing energy wastage and 

overloading of critical topological nodes. Successful packet delivery contributes a positive reward, while 

retransmissions, excessive energy consumption, or routing through already congested high-degree nodes result in 

penalties. This ensures a balance between robustness and energy efficiency [19]. 

Table 2. Reward Function Parameters 

Parameter Reward/Penalty Value 

Successful packet delivery +10 

Energy consumption > threshold –5 

Routing via critical hub node –3 

Node failure after forwarding –7 

Balanced energy distribution +4 

 

3.5 Training Algorithm 
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Deep Q-Network (DQN) was selected due to its ability to handle high-dimensional state spaces and approximate 

optimal policies. Experience replay buffers and target networks were incorporated to stabilise learning. Training 

episodes were run iteratively, with agents updating their policies after each disaster-simulated scenario [20]. 

3.6 Performance Metrics 

To validate the performance of the proposed method, several network-level and energy-level metrics were 

recorded. These include packet delivery ratio (PDR), average end-to-end delay, network lifetime (time until first 

node failure), energy consumption variance, and control overhead [21]. 

Table 3. Performance Metrics 

Metric Description 

Packet Delivery Ratio Ratio of successfully delivered packets to total 

End-to-End Delay Average delay per data packet 

Network Lifetime Time until 20% node energy depletion 

Energy Variance Fairness in energy usage across all nodes 

Control Overhead Ratio of control packets to data packets 

 

3.7 Validation and Comparative Protocols 

The proposed framework was compared with three categories of protocols: (i) traditional ad hoc routing protocols 

such as AODV and DSR, (ii) topology-based clustering protocols, and (iii) reinforcement learning-based protocols 

without topology awareness. Statistical significance testing was performed using t-tests to validate performance 

gains under multiple disaster scenarios [22]. 

3.8 Limitations and Assumptions 

Although the proposed framework integrates topology awareness and energy constraints, it assumes accurate and 

real-time availability of topology metrics, which may not always be feasible in severely damaged environments. 

Computational overhead for DQN training is another limiting factor, although lightweight models are being 

explored in ongoing work [23]. 

IV. RESULT AND ANALYSIS 

4.1 Packet Delivery Ratio (PDR) Performance 

The proposed topology-aware reinforcement learning framework demonstrated a consistently higher packet 

delivery ratio compared to baseline protocols. Under low-density networks (50 nodes), the PDR improved by 

nearly 18% over AODV and 12% over traditional RL. In high-density scenarios (150 nodes), the improvement 

was even more pronounced, ensuring reliable communication during network congestion. 

Table 4. Packet Delivery Ratio Comparison 

Node Density AODV DSR RL (No Topology) Proposed Framework 

50 Nodes 72% 74% 78% 85% 

100 Nodes 69% 72% 80% 88% 

150 Nodes 65% 70% 77% 90% 
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4.2 End-to-End Delay 

End-to-end delay was considerably reduced with the integration of topology awareness. The proposed system 

balanced routing load, avoiding bottlenecks at hub nodes, which led to lower transmission delays even under high 

stress conditions. 

Table 5. End-to-End Delay (ms) 

Node Density AODV DSR RL (No Topology) Proposed Framework 

50 Nodes 112 109 96 85 

100 Nodes 135 127 101 89 

150 Nodes 151 140 108 93 

4.3 Network Lifetime 

The inclusion of energy-aware rewards prolonged network lifetime by distributing routing loads across nodes 

more evenly. The proposed framework achieved a lifetime increase of up to 25% compared with non-topology-

based RL. 

Table 6. Network Lifetime (time until 20% node failure) 

Node Density AODV (s) DSR (s) RL (No Topology) (s) Proposed Framework (s) 

50 Nodes 510 528 564 632 

100 Nodes 476 495 550 615 

150 Nodes 442 460 533 598 

4.4 Energy Consumption Distribution 

Energy usage across nodes was more balanced with the proposed framework. Unlike conventional protocols that 

overload central nodes, the topology-aware RL avoided early depletion and extended the operational sustainability 

of the network. 

 

Figure 2: Phases of Proposed Energy [25] 

Table 7. Energy Variance Across Nodes 

Node Density AODV DSR RL (No Topology) Proposed Framework 

50 Nodes 0.34 0.32 0.28 0.19 
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100 Nodes 0.39 0.37 0.30 0.21 

150 Nodes 0.42 0.38 0.33 0.23 

 

4.5 Control Overhead 

The proposed protocol achieved a reduction in control overhead due to intelligent path learning, which minimized 

repeated flooding and unnecessary route discovery packets. 

 

Figure 1: Architecture of WSN [24] 

Table 8. Control Overhead (Control/Data Packet Ratio) 

Node Density AODV DSR RL (No Topology) Proposed Framework 

50 Nodes 0.45 0.42 0.31 0.24 

100 Nodes 0.52 0.49 0.36 0.27 

150 Nodes 0.58 0.54 0.40 0.30 

 

4.6 Robustness Under Node Failures 

To test resilience, random node failures were introduced. The proposed framework retained higher performance 

compared to alternatives by dynamically rerouting traffic while maintaining connectivity through redundant paths. 

Table 9. PDR Under Node Failures (100 Nodes) 

% of Nodes Failed AODV DSR RL (No Topology) Proposed Framework 

10% 64% 66% 72% 80% 

20% 55% 58% 67% 75% 

30% 47% 50% 61% 70% 

 

4.7 Impact of Mobility 

Mobility was found to have a significant effect on network stability. While traditional protocols degraded severely 

with high mobility, the proposed method adapted by incorporating topology dynamics into decision-making. 

Table 10. Effect of Mobility on PDR (100 Nodes) 

Mobility Model AODV DSR RL (No Topology) Proposed Framework 

https://musikinbayern.com/


Musik in bayern 
ISSN: 0937-583x Volume 90, Issue 9 (Sep -2025) 

https://musikinbayern.com               DOI https://doi.org/10.15463/gfbm-mib-2025-445 

 

Page | 57  
 

Static 78% 80% 84% 90% 

Random Waypoint 69% 72% 79% 87% 

Gauss-Markov 65% 67% 76% 85% 

 

4.8 Overall Comparative Insights 

Across all tested scenarios, the proposed topology-aware RL framework consistently outperformed traditional 

protocols and non-topology-based RL. The integration of topological features into learning not only improved 

packet delivery and reduced delays but also extended network sustainability by ensuring balanced energy 

consumption and robustness under failures. 

V. CONCLUSION 

The studies conducted in this paper have shown evidence that using topology-awareness in conjunction with 

reinforcement learning is a worthy step forward in achieving resilient energy-efficient, and adaptive routing 

solutions to the post-disaster communication network. In contrast to traditional ad hoc protocols like AODV and 

DSR, which require significant static routing discovery and would likely fail due to dynamic changes, the 

proposed design takes advantage of network structure: e.g. node degree, clustering coefficient, and local centrality 

measures, together with node-level properties like residual energy and link quality to develop a larger decision-

making space. This allows routing agents to learn policies that provide improvements both in packet delivery and 

in the overall lifetime of the network by spreading energy dissipation more uniformly across the topology. The 

results of the simulations validated that the packet delivery ratios were much better in various network densities 

and end-to-end delays reduced to intelligent avoidance of the bottle necks. In addition, energy variance was 

reduced since the reinforcement learning agent was largely unable to actively overuse high-degree nodes or critical 

network hubs too early, leading to the avoidance of premature energy loss. By comparison, topology-oblivious 

RL mechanisms had a tendency to overload some nodes, even though they offered superior performance than the 

classical protocols, which in turn resulted in unbalanced energy consumption and premature network collapse. 

The other major strength of the proposed framework was that it was capable of performing well in highly-negative 

situations such as random breakdowns in the nodes and locomotion-affected changes in the topology. Whereas 

conventional protocols deteriorated quickly under these circumstances, the topology-aware RL redistributed 

routing paths dynamically, maintaining connectivity throughout this environment and sending message delivery 

with confidence. The ability of the framework to -function with different levels of node failure illustrates its ability 

to withstand disasters areas where infrastructure has been severely damaged and connectivity patterns replaced 

on random basis. With regard to energy efficiency, the findings showed that the suggested approach always 

boosted the network lifetime that is consistently delayed the time nodes start failing, providing longer 

communication time when such critical rescue missions are to be performed. Overhead attributed to control was 

also minimized significantly with the RL agent successfully learning optimal paths and not generating spurious 

control packet flooding. This is not only a very welcome enhancement, but one of the most exhaustive aspects of 

control in emergency communication systems where both bandwidth and energy are limited. Notably, introduction 

of topology to the reward enabled existence of a fair trade-off between exploration and exploitation. The 

framework both found optimal paths and re-balanced the routing load, allowing even peripheral nodes to be useful 

in network operations, hence, enhancing fairness. In a wider sense, this project gives a good scope of 

understanding of how the application of AI-based resilience can be successfully implemented in the 

communication system of disasters. Reinforcement learning with topology-awareness has the ability of 

transcending the classical routing rationality and transiting to intelligent systems capable of predicting such 

changes in a network, as opposed to responding to it. This adaptive intelligence plays a very key role in disaster 

stricken areas where it is often not possible to have reconfiguration by human beings. This also implies a great 

impact to real world deployments. Dynamic networks composed of cellular wireless nodes which are lightweight 

and require no centralised control networks can be self-sufficient and are thus effective especially where 
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infrastructure has been destroyed. Also, the energy economy in the framework makes the communications unlikely 

to fail in the middle of the rescue process, and this is also crucial, considering that such processes may take several 

days or even weeks. Possible routes of future research are also outward within the study. Although the suggested 

framework demonstrated its efficiency in the context of simulation environments, real-life deployment scenario 

might bring new difficulties in the form of hardware restriction, uncompetable interference, and different quality 

of wireless links. The work cannot operate efficiently on devices with low-power consumption and utilise all the 

computation and memory resources when further optimisation should take place. A third area has promise that 

can be pursued in the design of the RL solution, and that is to integrate security tools into it to address threatening 

behaviour, or adversarial attacks that might occur in an emergency. Moreover, although the topology and energy 

were taken as dominant parameters in this research, future application could generalize the state space to comprise 

additional real-time context-aware properties like mobility of rescue teams, geographical barriers, or the level of 

priority associated with data being sent. Optimisation of routing could be done to minimise latency, maximise 

reliability, and fairness at the same time, using multi-objective reinforcement learning leaving energy consumption 

unchanged. Federated learning and distributed intelligence also has potential, which lets nodes not only 

cooperatively train models, but does not centralise data, thus further increasing scalability and privacy. An 

immediate observation on the integration of the framework with new technologies such as unmanned aerial 

vehicles (UAVs) or satellite-based relays is that it may bring hybrid communication backbones to the disaster 

zones, both local and wide-area, without any gaps. In sum, the present study makes a convincing argument to 

suggest topology-aware reinforcement learning in the form of an energy-efficient routing solution in disaster-

impacted communications networks as a paradigm shifter. In confronting both of the issues that are network 

resilience and energy sustainability, it invokes the foundation of next generation autonomous, intelligent and 

adaptive emergency communication systems.  
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