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Abstract:

The efficiency and resilience of communication networks is critical in recovery efforts in the wake of large-scale
natural disasters as they represent key communication spaces to coordinate rescue and support social functionality
restoration. Standard routing protocols are prone to collapse during dynamic and unpredictable post-disaster
conditions causing severe communication latencies, and energy wastage. In this paper, we propose topology-
sensitivity reinforcement learning to learn energy efficient routing in the post disaster communication networks.
The suggested framework will combine deep reinforcement learning and real-time topological information to
perform dynamic adaptation of the routing decision on node availability and connectivity patterns and remaining
levels of energy. Through continuous educational exposure as the network environment changes, the framework
can proactively respond to optimal energy-efficient routing paths optimized to ensure greatest network
connectivity. As the simulation experiments indicate, topology-aware reinforcement learning strategy greatly
enhances packet delivery ratio, network lifetime, and robust communication as against conventional routing
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protocols. The results emphasize the need of merging learning based adaptation with topology awareness when
designing emergence and energy conscious routing protocols in emergency communication.

Keywords: Post-Disaster Communication Networks, Reinforcement Learning, Topology Awareness, Energy-
Efficient Routing, Network Resilience

I.INTRODUCTION

Over the last few years, the severity and the regularities of many natural calamities like earthquakes, floods,
hurricanes, and wild fires, have spanned with a full swing owing to the direct man-made, and the environmental
causes. After such disastrous events, the presence of an effective and stable communication system becomes an
essential need in the coordination of a disaster response team, government, and to required populations.
Nevertheless, classical fixed communication systems tend to fail when subject to severe physical destructive
events, yielding a wide gap in data sharing functions, decision-making lags and lack of centralization of rescue
services. Upon failure of terrestrial communication infrastructure (or when the infrastructure entirely does not
exist) the homogeneous wireless devices and mobile ad hoc nodes may be deployed to constitute the post-disaster
communication networks through its collaborative network framework in providing the emergency
communication backbone. Regrettably, such transient and on-demand networks are characterised by high
topological dynamics, varying link qualities, inadequate bandwidth, energy constraints and characterised by
unstable node behaviour which hampers the performance of the conventional deterministic routing algorithms
quite substantially. Specifically, the energy use is a primary limitation during postdisaster situations, because a
majority of the nodes are battery operated and they could not be easily charged and refreshed within a limited
duration of time. Thus, routing decision which do not take into account the residual energy Levels of the nodes
and changing topology situations can easily lead to exhaustion of network resources, partial network isolation and
failure of communication in general. Due to that, more of the research community has been looking into intelligent
and adaptive routing mechanisms to improve the resiliency and energy requirements of the post disaster
communication networks. In spite of the diversity of approaches to heuristic and reactive routing protocols in ad
hoc networks scenario, the majority of them operate based on some pre-defined rules, already chosen routing
strategies and/or on a limited view of the network dynamics and do not have the capability of continuous learning
under a dynamic environment. The more recent addition in this context is the reinforcement learning (RL) methods
that proved to be an efficient algorithm when handling uncertain and extremely dynamic network environments.
At a given network node (or agent) in RL, the agent can interact with its environment at that point autonomously
and it receives feedback in the form of rewards or penalties, and would then adjust its decision-making policy to
optimize some particular long -term goal. Reinforcement learning allows its performance to be iteratively refined
on the basis of the past interactions and is in that way superior to rule-based routing protocols. Nevertheless, recent
RL-based routing algorithms tend to overlook the topology of the underlying network and hence the overall
comprehension of the evolution of the connectivity patterns in multi-period network dynamics. This constraint
causes inefficient or even detrimental routing decision in the event the network topology shifts in a dramatic way
because of nodes dying, physical obstruction etc. Additionally, most current methods fail to explicitly build energy
awareness into the reward function applied on the RL agent and this lowers their applicability to the post damage
world where energy storage has become a mandatory requirement. This paper suggests a topology-aware
reinforcement learning mechanism to design energy-efficient routing in post -disaster routed networks. The main
idea about the proposed approach is to incorporate the topological data into the learning of the RL agent so that it
could learn about the structure properties of the network and start to actively choose paths through the network to
both preserve connectivity as well as to equalise the energy distribution between the different nodes. The
framework also dynamically acquires the topological characteristics of the network (node degree, clustering
coefficient, betweenness centrality and neighbour density) at each time step and integrates them with other
traditional node attributes (residual battery level and link quality) to form a complex state space representation of
the RL agent. Consequently, the agent may gain a profound insight on the effect of topological features in routing
performance, and tune its routing behavior with regard to a dynamically changing network or the unexpected
breakdown of key nodes. By adopting energy metrics into the reward function, the RL agent is incentivised to
consume least energy possible and not overuse the nodes with high centrality that may act as bottlenecks or single
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points of failure. The efficiency of the proposed framework is validated in the form of extensive simulation studies
carried out to handle a large number of differing postdisaster scenarios at random node failure patterns, irregular
obstacle layouts, and highly dynamic changes in the topology. The experiments demonstrate that topology-aware
reinforcement learning solution outperforms a set of benchmarked protocols (both legacy ad hoc routing schemes
and standard RL-based protocols) regarding the packet delivery ratio, average end-to-end delay, network lifetime,
as well as energy consumption distribution. Moreover, the framework demonstrates a high level of flexibility and
scalability being able to sustain powerful communication performance with low concentration of a network or a
considerable number of mobile nodes. These preliminary results demonstrate that the topology-aware
reinforcement learning can be used as a powerful basis to construct robust, self-sustaining, and automatic routing
protocols of emergency communication systems. It ultimately leads to more dependable and stable
communications infrastructures after the occurrence of disasters and makes the emergency response teams able to
execute their life savings operations efficiently and in time

II. RELEATED WORKS

The recent advancements on the field of post-disaster communication networks have concentrated on maximizing
the efficiency of routing, improving network resiliency, and saving energy potentials within a strongly volatile
and resource-limited conditions. Conventional routing protocols (e.g., AODV and DSR) that are commonly used
in mobile ad hoc networks could not update themselves well in the context of disasters, because of fixed route
repair procedures and little topology awareness of the rapidly changing topology [1]. As reported in [2] and [3],
reactive routing methods introduce too many control overheads when quick links breaks occur, eventually
resulting to higher energy wastage and low packet delivery. A number of topology-based routing protocols are
suggested to tackle this issue, in which forwarding decisions can be taken by nodes, depending on local
connectivity patterns. To illustrate one scenario, the topology-control scheme proposed in [4] determines a set of
critical nodes in the sense of graph-theoretic centrality measures of the nodes, and does not overuse them so as to
minimize the likelihood of collapse in connectivity. The regroup procedure of [5] similarly builds the lightweight
clusters dynamically and exploits the intra- and inter-cluster communication to enhance scalability and minimize
overlapping messages. However, topology-aware heuristics assume pre-defined rules which do not adapt
themselves to unforeseen topology or node behaviour. Machine learning methods, and reinforcement learning
(RL) in particular, have gained much attention in the field over the past few years due to their capacity to learn
optimal routing policies by trial- and error using dynamic feedback on the network. Along this same vein, the
routing protocol proposed in [6] run on Q-learning will support delivery ratios and eliminate delays by
strengthening route choices whose outcomes are the outcome of successful packet transmission. Similarly, the
deep reinforcement learning method in [7], develops an elaborate routing policy based on a neural network that
can learn complex stateaction pairs on demand. Nonetheless these approaches do not much recognize the
topological features of the underlying network and look at each routing decision in a vacuum that is independent
of topology. In [8], it has been shown that including topological features into the state representation of RL agents
brings a substantial performance gain when applied to wireless sensor networks, yet it is not clear whether it would
also be the case in post-disaster scenarios. In [9], scholars note that energy awareness is central to RL-based
schemes and reward functions need to be implemented to consider the remaining energy levels to avoid
overloading the nodes. There is a way of introducing a simple energy-aware reward scheme in the scheme of [10],
though it lacks the topological roles of the nodes, and thus this might cause network partition even though, on the
individual nodes, their energy levels remain reasonable. In [11, 12], other approaches also suggest hybrid protocols
using a topology-control and reinforcement learning combination. Such combination strategies usually consider
topological parameters with fixed weights, e.g., the degree of a node or its betweenness centrality, and use them
as inputs into an RL algorithm. Although this enhances routing performance when the network operates within
stable conditions, there is still no dynamic adaptation to extreme changes of topology in cases of a post-disaster
scenario. Recent innovations in the learning of graph representations, e.g. graph neural networks (GNNs), that are
able to capture global topological properties of graph representation, have shown good decision outcomes in
communication networks [13]. They are however computationally very expensive and training may be unsuitable
to lightweight post-disaster equipment where processing and energy resources are extremely scarce. Also, the
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majority of GNN-based routing algorithms continue to not explicitly model the energy constraints as part of their
optimization decision sets. A further current of study has examined bio-inspired approaches, including particle
swarm optimisation and ant colony optimisation, as methods of routing in disaster networks [14]. These methods
have to some extent attained adaptability but are weak due to not adapting well to a highly dynamic environment
and that they depend on global convergence. Recent work in [15] has clearly indicated that the future leading post-
disaster routing technologies must incorporate topology-awareness, energy-efficiency and adaptive learning into
a multi-purposed model. This leads to the work proposed in this paper that aims to create a topology-sensitive
reinforcement learning framework incorporating the usage of real-time topology details and energy values to
create robust and energy efficient routing in post-disaster communication networks. In spite of the advances done
in the process of integrating learning-based mechanisms and topology awareness, there still exist some unsolved
issues that may have motivated further research. Among the main weaknesses of the current research is the
inability to identify the trade-off between the aspects of adaptability and energy efficiency altogether. Although a
substantial level of a change in the environment can often be successfully adapted to through many reinforcement
learning methods, this model often culminates in high energy expenditure which is caused by the frequent
exploration and evolution of the policy. In contrast, approaches that purely optimize on energy preservation have
the tendency to trade off on route adaptability, resulting to inefficient routing through disaster prone changing
environments. Scalability of methods proposed is another problem. Solutions that have been successful in small-
scale networks and with few nodes do not necessarily scale to large-scale deployment where, with the exponential
combination of routes, and where the overheads of learning become an issue. Moreover the fairness tree in energy
usage in the network has also been lost in most frameworks. The absence of mechanisms adequate to balance the
traffic throughout the network can result in an excessive reliance on high-degree or centrally placed nodes to
execute traffic forwarding, which results in the premature exhaustion of the energy store of these nodes and
subsequent network partition. Another research insight highlighted by analysts is that the protocols in place are
not thoroughly in the face of highly simulated environments of disaster where even the presence of fallen
structures, disruption of power lines, disabling communication lines, etc., play a key role in altering the norms of
communication. Such settings might encounter the failure of simulation-based assessments to capture the
unpredictability of the real situation. It is also becoming clear that security need to be viewed with routing
efficiency and energy management. In reinforcement learning designs, routing regulations might be on the
consequences of malicious nodes, purposeful jamming, or hacked agents unless strong safety precaution
mechanisms are incorporated. In combination, these issues represent an ever-present need to develop a unified
strategy that is lightweight, scalable, energy-conscious, topology-aware, and safe the proposed framework in this
paper will help to provide.

11I. METHODOLOGY
3.1 Research Design

The research adopts a simulation-driven experimental design to evaluate the effectiveness of topology-aware
reinforcement learning for energy-efficient routing in post-disaster communication networks. The design
incorporates disaster-inspired scenarios, network topologies of varying densities, and heterogeneous device
constraints. The key focus is to integrate topology-aware metrics into reinforcement learning algorithms and to
compare their performance against conventional routing protocols and baseline RL methods [16]. By combining
agent-based modeling with topology-driven inputs, the framework ensures robust adaptability to rapidly changing
communication environments.

3.2 Simulation Environment

The study uses the NS-3 simulation platform, enhanced with Python-based reinforcement learning libraries, to
model post-disaster communication networks. The environment consists of mobile ad hoc nodes deployed over
irregular terrain with random node failures to emulate disaster conditions. Each node is equipped with limited
battery reserves, mobility functions, and communication capabilities. To evaluate scalability, simulations were
conducted with 50, 100, and 150 nodes over an area of 1000 x 1000 m? Mobility models such as Random
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Waypoint and Gauss-Markov were employed to replicate the unpredictable movement of rescue personnel and
devices [17].

Table 1. Simulation Parameters

Parameter Value Range/Description

Simulation Tool NS-3 with Python RL Integration

Area of Deployment 1000 x 1000 m?

Node Count 50, 100, 150
Mobility Models Random Waypoint, Gauss-Markov
Energy Model Initial 1000 Joules/node

Communication Range | 150 m

MAC Protocol IEEE 802.11b

Simulation Time 1000 seconds

3.3 State Space and Actions

The RL agent defines its state space using both node-centric and topology-centric parameters. Node-centric
features include residual energy, link quality, and buffer occupancy, while topology-centric features consist of
node degree, clustering coefficient, and local betweenness centrality. Actions correspond to selecting the next-hop
node for data forwarding. By combining topology-awareness with local energy metrics, the agent can balance
between efficient routing and fair energy distribution [18].

3.4 Reward Function Design

The reward function is formulated to encourage successful data delivery while penalizing energy wastage and
overloading of critical topological nodes. Successful packet delivery contributes a positive reward, while
retransmissions, excessive energy consumption, or routing through already congested high-degree nodes result in
penalties. This ensures a balance between robustness and energy efficiency [19].

Table 2. Reward Function Parameters

Parameter Reward/Penalty Value

Successful packet delivery +10

Energy consumption > threshold | —5

Routing via critical hub node -3
Node failure after forwarding -7
Balanced energy distribution +4

3.5 Training Algorithm
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Deep Q-Network (DQN) was selected due to its ability to handle high-dimensional state spaces and approximate
optimal policies. Experience replay buffers and target networks were incorporated to stabilise learning. Training
episodes were run iteratively, with agents updating their policies after each disaster-simulated scenario [20].

3.6 Performance Metrics

To validate the performance of the proposed method, several network-level and energy-level metrics were
recorded. These include packet delivery ratio (PDR), average end-to-end delay, network lifetime (time until first
node failure), energy consumption variance, and control overhead [21].

Table 3. Performance Metrics

Metric Description

Packet Delivery Ratio | Ratio of successfully delivered packets to total

End-to-End Delay Average delay per data packet

Network Lifetime Time until 20% node energy depletion
Energy Variance Fairness in energy usage across all nodes
Control Overhead Ratio of control packets to data packets

3.7 Validation and Comparative Protocols

The proposed framework was compared with three categories of protocols: (i) traditional ad hoc routing protocols
such as AODV and DSR, (ii) topology-based clustering protocols, and (iii) reinforcement learning-based protocols
without topology awareness. Statistical significance testing was performed using t-tests to validate performance
gains under multiple disaster scenarios [22].

3.8 Limitations and Assumptions

Although the proposed framework integrates topology awareness and energy constraints, it assumes accurate and
real-time availability of topology metrics, which may not always be feasible in severely damaged environments.
Computational overhead for DQN training is another limiting factor, although lightweight models are being
explored in ongoing work [23].

IV. RESULT AND ANALYSIS
4.1 Packet Delivery Ratio (PDR) Performance

The proposed topology-aware reinforcement learning framework demonstrated a consistently higher packet
delivery ratio compared to baseline protocols. Under low-density networks (50 nodes), the PDR improved by
nearly 18% over AODV and 12% over traditional RL. In high-density scenarios (150 nodes), the improvement
was even more pronounced, ensuring reliable communication during network congestion.

Table 4. Packet Delivery Ratio Comparison

Node Density | AODV | DSR | RL (No Topology) | Proposed Framework

50 Nodes 72% 74% | 78% 85%
100 Nodes 69% 72% | 80% 88%
150 Nodes 65% 70% | 77% 90%
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4.2 End-to-End Delay

End-to-end delay was considerably reduced with the integration of topology awareness. The proposed system
balanced routing load, avoiding bottlenecks at hub nodes, which led to lower transmission delays even under high
stress conditions.

Table 5. End-to-End Delay (ms)

Node Density | AODV | DSR | RL (No Topology) | Proposed Framework
50 Nodes 112 109 | 96 85
100 Nodes 135 127 | 101 89
150 Nodes 151 140 | 108 93
4.3 Network Lifetime

The inclusion of energy-aware rewards prolonged network lifetime by distributing routing loads across nodes
more evenly. The proposed framework achieved a lifetime increase of up to 25% compared with non-topology-
based RL.

Table 6. Network Lifetime (time until 20% node failure)

Node Density | AODV (s) | DSR (s) | RL (No Topology) (s) | Proposed Framework (s)

50 Nodes 510 528 564 632
100 Nodes 476 495 550 615
150 Nodes 442 460 533 598

4.4 Energy Consumption Distribution

Energy usage across nodes was more balanced with the proposed framework. Unlike conventional protocols that
overload central nodes, the topology-aware RL avoided early depletion and extended the operational sustainability
of the network.

Manages
Radio
Dissipation

On-Demand On-Demand
Wake-up e Wake-up

s —| efficient route [—» 4
radio on radio on

5 discover 5 A
sender side y receiver side

A4
Optimise
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Figure 2: Phases of Proposed Energy [25]

Table 7. Energy Variance Across Nodes

Node Density | AODV | DSR | RL (No Topology) | Proposed Framework

50 Nodes 0.34 032 | 0.28 0.19
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100 Nodes

0.39

0.37

0.30

0.21

150 Nodes

0.42

0.38

0.33

0.23

4.5 Control Overhead

The proposed protocol achieved a reduction in control overhead due to intelligent path learning, which minimized

repeated flooding and unnecessary route discovery packets.
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Figure 1: Architecture of WSN [24]

Table 8. Control Overhead (Control/Data Packet Ratio)

Node Density | AODV | DSR | RL (No Topology) | Proposed Framework
50 Nodes 0.45 0.42 | 0.31 0.24
100 Nodes 0.52 0.49 | 0.36 0.27
150 Nodes 0.58 0.54 | 0.40 0.30

4.6 Robustness Under Node Failures

To test resilience, random node failures were introduced. The proposed framework retained higher performance
compared to alternatives by dynamically rerouting traffic while maintaining connectivity through redundant paths.

Table 9. PDR Under Node Failures (100 Nodes)

% of Nodes Failed | AODV | DSR | RL (No Topology) | Proposed Framework
10% 64% 66% | 72% 80%
20% 55% 58% | 67% 75%
30% 47% 50% | 61% 70%
4.7 Impact of Mobility

Mobility was found to have a significant effect on network stability. While traditional protocols degraded severely
with high mobility, the proposed method adapted by incorporating topology dynamics into decision-making.

Table 10. Effect of Mobility on PDR (100 Nodes)

Mobility Model AODV | DSR | RL (No Topology) | Proposed Framework
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Static 78% 80% | 84% 90%
Random Waypoint | 69% 72% | 79% 87%
Gauss-Markov 65% 67% | 76% 85%

4.8 Overall Comparative Insights

Across all tested scenarios, the proposed topology-aware RL framework consistently outperformed traditional
protocols and non-topology-based RL. The integration of topological features into learning not only improved
packet delivery and reduced delays but also extended network sustainability by ensuring balanced energy
consumption and robustness under failures.

V. CONCLUSION

The studies conducted in this paper have shown evidence that using topology-awareness in conjunction with
reinforcement learning is a worthy step forward in achieving resilient energy-efficient, and adaptive routing
solutions to the post-disaster communication network. In contrast to traditional ad hoc protocols like AODV and
DSR, which require significant static routing discovery and would likely fail due to dynamic changes, the
proposed design takes advantage of network structure: e.g. node degree, clustering coefficient, and local centrality
measures, together with node-level properties like residual energy and link quality to develop a larger decision-
making space. This allows routing agents to learn policies that provide improvements both in packet delivery and
in the overall lifetime of the network by spreading energy dissipation more uniformly across the topology. The
results of the simulations validated that the packet delivery ratios were much better in various network densities
and end-to-end delays reduced to intelligent avoidance of the bottle necks. In addition, energy variance was
reduced since the reinforcement learning agent was largely unable to actively overuse high-degree nodes or critical
network hubs too early, leading to the avoidance of premature energy loss. By comparison, topology-oblivious
RL mechanisms had a tendency to overload some nodes, even though they offered superior performance than the
classical protocols, which in turn resulted in unbalanced energy consumption and premature network collapse.
The other major strength of the proposed framework was that it was capable of performing well in highly-negative
situations such as random breakdowns in the nodes and locomotion-affected changes in the topology. Whereas
conventional protocols deteriorated quickly under these circumstances, the topology-aware RL redistributed
routing paths dynamically, maintaining connectivity throughout this environment and sending message delivery
with confidence. The ability of the framework to -function with different levels of node failure illustrates its ability
to withstand disasters areas where infrastructure has been severely damaged and connectivity patterns replaced
on random basis. With regard to energy efficiency, the findings showed that the suggested approach always
boosted the network lifetime that is consistently delayed the time nodes start failing, providing longer
communication time when such critical rescue missions are to be performed. Overhead attributed to control was
also minimized significantly with the RL agent successfully learning optimal paths and not generating spurious
control packet flooding. This is not only a very welcome enhancement, but one of the most exhaustive aspects of
control in emergency communication systems where both bandwidth and energy are limited. Notably, introduction
of topology to the reward enabled existence of a fair trade-off between exploration and exploitation. The
framework both found optimal paths and re-balanced the routing load, allowing even peripheral nodes to be useful
in network operations, hence, enhancing fairness. In a wider sense, this project gives a good scope of
understanding of how the application of Al-based resilience can be successfully implemented in the
communication system of disasters. Reinforcement learning with topology-awareness has the ability of
transcending the classical routing rationality and transiting to intelligent systems capable of predicting such
changes in a network, as opposed to responding to it. This adaptive intelligence plays a very key role in disaster
stricken areas where it is often not possible to have reconfiguration by human beings. This also implies a great
impact to real world deployments. Dynamic networks composed of cellular wireless nodes which are lightweight
and require no centralised control networks can be self-sufficient and are thus effective especially where

Page | 57


https://musikinbayern.com/

Musik in bayern
ISSN: 0937-583x Volume 90, Issue 9 (Sep -2025)
https://musikinbayern.com DOI https://doi.org/10.15463/gfbm-mib-2025-445

infrastructure has been destroyed. Also, the energy economy in the framework makes the communications unlikely
to fail in the middle of the rescue process, and this is also crucial, considering that such processes may take several
days or even weeks. Possible routes of future research are also outward within the study. Although the suggested
framework demonstrated its efficiency in the context of simulation environments, real-life deployment scenario
might bring new difficulties in the form of hardware restriction, uncompetable interference, and different quality
of wireless links. The work cannot operate efficiently on devices with low-power consumption and utilise all the
computation and memory resources when further optimisation should take place. A third area has promise that
can be pursued in the design of the RL solution, and that is to integrate security tools into it to address threatening
behaviour, or adversarial attacks that might occur in an emergency. Moreover, although the topology and energy
were taken as dominant parameters in this research, future application could generalize the state space to comprise
additional real-time context-aware properties like mobility of rescue teams, geographical barriers, or the level of
priority associated with data being sent. Optimisation of routing could be done to minimise latency, maximise
reliability, and fairness at the same time, using multi-objective reinforcement learning leaving energy consumption
unchanged. Federated learning and distributed intelligence also has potential, which lets nodes not only
cooperatively train models, but does not centralise data, thus further increasing scalability and privacy. An
immediate observation on the integration of the framework with new technologies such as unmanned aerial
vehicles (UAVs) or satellite-based relays is that it may bring hybrid communication backbones to the disaster
zones, both local and wide-area, without any gaps. In sum, the present study makes a convincing argument to
suggest topology-aware reinforcement learning in the form of an energy-efficient routing solution in disaster-
impacted communications networks as a paradigm shifter. In confronting both of the issues that are network
resilience and energy sustainability, it invokes the foundation of next generation autonomous, intelligent and
adaptive emergency communication systems.
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